Monte Carlo analysis of inverse problems
نویسندگان
چکیده
Monte Carlo methods have become important in analysis of nonlinear inverse problems where no analytical expression for the forward relation between data and model parameters is available, and where linearization is unsuccessful. In such cases a direct mathematical treatment is impossible, but the forward relation materializes itself as an algorithm allowing data to be calculated for any given model. Monte Carlo methods can be divided into two categories: the sampling methods and the optimization methods. Monte Carlo sampling is useful when the space of feasible solutions is to be explored, and measures of resolution and uncertainty of solution are needed. The Metropolis algorithm and the Gibbs sampler are the most widely used Monte Carlo samplers for this purpose, but these methods can be refined and supplemented in various ways of which the neighbourhood algorithm is a notable example. Monte Carlo optimization methods are powerful tools when searching for globally optimal solutions amongst numerous local optima. Simulated annealing and genetic algorithms have shown their strength in this respect, but they suffer from the same fundamental problem as the Monte Carlo sampling methods: no provably optimal strategy for tuning these methods to a given problem has been found, only a number of approximate methods. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
A Probabilistic Approach to Inverse Convection-Diffusion
Initial condition inverse problems are ill-posed and computationally expensive to solve. We present a computational approach for solving inverse problems in the realm of onedimensional contaminant transport. The approach employs finite differencing as a forward solver and probabilistic methods for inversion. Markov Chain Monte Carlo sampling is used to efficiently recover posterior probabilitie...
متن کاملSequential Monte Carlo methods for Bayesian elliptic inverse problems
In this article we consider a Bayesian inverse problem associated to elliptic partial differential equations (PDEs) in two and three dimensions. This class of inverse problems is important in applications such as hydrology, but the complexity of the link function between unknown field and measurements can make it difficult to draw inference from the associated posterior. We prove that for this ...
متن کاملDiscretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems in Infinite Dimensional Parameter Spaces
In this paper we target at developing discretization-invariant, namely dimension-independent, Markov chain Monte Carlo (MCMC) methods to explore PDEconstrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we present two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of first prop...
متن کامل2822 1 Approximate Solution of Large - Scale Linear Inverse Problems with Monte Carlo Simulation ∗
We consider the approximate solution of linear ill-posed inverse problems of high dimension with a simulation-based algorithm that approximates the solution within a low-dimensional subspace. The algorithm uses Tikhonov regularization, regression, and low-dimensional linear algebra calculations and storage. For sampling efficiency, we use variance reduction/importance sampling schemes, speciall...
متن کاملAttenuation Correction in SPECT during Image Reconstruction using an Inverse Monte Carlo Method: A Simulation Study
Introduction: The main goal of SPECT imaging is to determine activity distribution inside the organs of the body. However, due to photon attenuation, it is almost impossible to do a quantitative study. In this paper, we suggest a mathematical relationship between activity distribution and its corresponding projections using a transfer matrix. Monte Carlo simulation was used to find a precise tr...
متن کاملBayesian Inverse Problems with Monte Carlo Forward Models
The full application of Bayesian inference to inverse problems requires exploration of a posterior distribution that typically does not possess a standard form. In this context, Markov chain Monte Carlo (MCMC) methods are often used. These methods require many evaluations of a computationally intensive forward model to produce the equivalent of one independent sample from the posterior. We cons...
متن کامل